
© 2025 - ALSE
Date : Jan 2025
Version : 2025.01b

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 1

- ALSE -
Implementing Signal Processing

in Lattice FPGAs
-

Application Note #1
- sysDSP Inference -

Advanced Logic Synthesis for Electronics
A.L.S.E. - https://alse-fr.com

To contact ALSE, visit the
ALSE website (FPGA.fr)

or write to : info@alse-fr.com

© Copyright 2025 ALSE all rights reserved.
NEITHER THE WHOLE NOR ANY PART OF THE INFORMATION CONTAINED IN, MAY BE ADAPTED OR
REPRODUCED IN ANY MATERIAL OR ELECTRONIC FORM WITHOUT THE PRIOR WRITTEN CONSENT
OF THE COPYRIGHT HOLDER. THE INFORMATION, DOCUMENTATION AND CODE ARE SUPPLIED ON
AN AS-IS BASIS AND NO WARRANTY AS TO THEIR SUITABILITY FOR ANY PARTICULAR PURPOSE IS
EITHER MADE OR IMPLIED. ALSE WILL NOT ACCEPT ANY CLAIM FOR DAMAGES HOWSOEVER
ARISING AS A RESULT OF USE OF ANY INFORMATION PROVIDED HERE.
THIS INFORMATION IS NOT ENDORSED BY LATTICE.

https://alse-fr.com/
https://alse-fr.com/
https://www.alse-fr.com/
mailto:info@alse-fr.com

Table of Contents
I - Document history... 3

II - Archive..3

III - Introduction.. 4

Experimenting.. 4

IV - The Design Challenge...5

V - The Silicon.. 5

VI - The Design Tools...5

VII - The documents... 6
Architecture of a DSP block..6

VIII - Inference by HDL Code...8
VHDL ‘93.. 8
SystemVerilog P1800-2017..10

IX - Instantiation using Radiant..11

X - Verification.. 12
Simulation of the RTL code..12
Self-Testing VHDL Test bench...13
RTL Simulation results..14

XI - Unitary Synthesis... 15
Timing Constraints.. 15
Radiant project..15
Technology View Netlist... 16
Timing Results.. 16
Post synthesis simulation...17

XII - Conclusion.. 17

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 2

I - Document history

Version Date Description

v2025.01a Jan 2025 Initial Version

v2025.01b Jan 2025 Iteration

II - Archive

This document is part of an archive which you can download using the link on our web site.

This archive contains :

sDSP/docs/* .pdf : this document

sDSP/src Source files (VHDL & SystemVerilog + SDC constraints)

sDSP/sim VHDL test benches & Simulation scripts

sDSP/Radiant Lattice Radiant project folder

sDSP/Radiant/sDSP Radiant Project

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 3

III - Introduction

Lattice FPGAs are typically offering many advantages among which :
- low cost
- low power consumption
- simple and efficient architectures (which allowed open source tools to be developed)
- robust silicon
- availability under a lot of variants and packages.
- and the arrival of new mid-range families (Avant-).

However, there were in the past a number of historically weak points :
- the design tools (some limitations, not enough intuitive nor user-friendly)
- the mediocre quality of the documentation
- the limited choice of FPGA kits
- the Lattice IPs
- the limited market shares (with smaller user base and ecosystem as a consequence).

In the past, designing Lattice FPGAs was more difficult, demanded more know-how and
experience, and required more time and efforts than for the more popular FPGAs. Leading to
higher development cost (NREs). This explains why the choice of Lattice FPGAs has often been
related with high volume applications, where the increased development cost was compensated by
the lower cost of the FPGAs.

As of end-2024, the situation has positively evolved on several fronts, with the new “Radiant”
IDE replacing “Diamond”. Radiant is now a rather complete and modern tool, with very active
development under way. Note that Lattice has also developed tools for building systems and SoC
application (“Propel”), but this is not relevant to this Application note.

However, mastering Radiant does requires some efforts. The good news is there is a really
excellent and free Training video (2h40) available to quickly understand and master Radiant
(“Developing with Radiant Fundamentals”) which you can find in the Lattice Insights (Education)
web site.

Moreover, this Application note, the first of a series, will demonstrate through a real-world example,
that a modern and efficient design methodology is applicable to the Lattice FPGAs, even if it
doesn’t transpire if you rely solely on the documentation !

Experimenting

At no cost, you can test the contents of this ApNote using Lattice Radiant and QuestaSim Lattice
Edition. If you don’t have these tools already installed, contact ALSE and we can share our 6
pages document that shows how to install and license the latest Lattice tools, then how use them
to create your first project.

The archive of this ApNote contains the source code, the test benches and a Radiant project file
(.rdf).

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 4

https://www.latticesemi-insights.com/
https://www.latticesemi-insights.com/

IV - The Design Challenge

We decided to build a specialized IP to implement a very large FIR filter of up to 256 non-
symmetric 16-bits coefficients, with 16 bits input, while using a very small amount of resources.
This is possible when the sample rate is limited (like 2 Msamples/s in our case).

As you certainly know, a FIR filter is a very simple equation : the sum of the D(n) last samples each
multiplied by a K(n) coefficient. With a processing clock at 600 MHz, the above filter can be
implemented using a single MAC (Multiply-Accumulate) block and a single memory block for the
samples. At 150 MHz, this must be done by 4 x MACs, and a much more complex design involving
careful arrangement and use of several internal memory blocks.

In the intended configuration, the output width (in the absence of saturation or truncation) is 32+8 =
40 bits.

When you read the Lattice documentation (of the Nexus families), you discover that the “DSP”
blocks are quite versatile and capable, and can be configured as 18x18 multipliers followed by a 54
bits accumulator without necessitating any external logic. This is nicely matching our needs !
A Pre-Adder is also available, but we won’t need it.

Unfortunately, you won’t find anything really useful in the documentation telling you how to do this !
You will be encouraged to create a macro function with confusing parameters, but that’s not the
way to go.

As we will see in this Application Note, with a solid experience and a bit of experimentation, you
can use traditional and efficient inference methods and take advantage of the chosen low-cost
Lattice FPGA to achieve excellent processing performance in a very small fraction of the FPGA.

V - The Silicon

We chose to use a modern and affordable family with many advantages : the Certus-NX (28nm
SOI technology). But its architecture is common to many Lattice FPGA families, so this article will
apply directly to all the Lattice “Nexus” FPGAs, which includes the CrossLink™-NX, Certus™-
NX, CertusPro™-NX, and MachXO5™-NX FPGAs.

VI - The Design Tools

These families are supported by the new generation tool : Radiant, on which Lattice efforts are
focused. Its predecessor, Diamond, has become a legacy tool and must still be used for the ECP
families.

We’ve seen Radiant make progress on a lot of fronts, and one of them (since version 3.0) is the
generalized and efficient support of SDC Timing Constraints, one of many key points.

As mentioned in the Introduction, if you are familiar with FPGA development and have used other
tools, you can quickly master Radiant with the free training video that we recommend.

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 5

https://www.latticesemi.com/en/Products/FPGAandCPLD/Certus-NX
https://en.wikipedia.org/wiki/Finite_impulse_response

VII - The documents

We found :

➢ The “sysDSP User Guide for Nexus Platform” Technical Note. (June 2024)

➢ The “DSP Arithmetic Modules - Lattice Radiant Software” (Dec 2023)

➢ “Lattice Radiant Software 2024.2 User Guide” (20 Dec 2024)
(beware : a lot of obsolete versions of this User Guide show up in the Lattice website)

As you will see, the documents available about the DSP blocks aren’t too useful when it comes to
using them efficiently, but they contain information about their internal architecture.

Architecture of a DSP block

The diagram below is not particularly clear nor very helpful :

Summary : there are pre-Adders, followed by Multipliers followed by Accumulators, with by-
passable registers inserted between the stages. The operations can be configured as 9, 18 or 36
bits vectors.

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 6

https://www.latticesemi.com/view_document?document_id=54523
https://www.latticesemi.com/view_document?document_id=52686
https://www.latticesemi.com/view_document?document_id=52791

There is another figure in the second documentation that is close to our use case :

Figure 4.14. 18 × 18 Wide Multiplier and Adder/Subtractor Arithmetic Function

In this figure, it appears that the accumulator seems loadable (but our tests of inference failed to
enable this feature -to load zero synchronously-).

But this is enough to hope that we could :

➢ Enter two 18 bits operands into the first bank of pipeline registers

➢ Perform a signed multiplication to obtain a signed 36 bits vector

➢ Enter the product in the second bank of registers

➢ Add the 36 bits result in the 54 bits accumulator

➢ Output the Accumulator through the final registers bank.

➢ Note that we also need the capability to clear the accumulator at any time.

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 7

VIII - Inference by HDL Code

We have coded two versions : one in VHDL and the other in SystemVerilog.

We have verified that both VHDL and SystemVerilog versions produce the exact same result after
synthesis, either by Synplify Pro or with Lattice Synthesis Engine (“LSE”).

The first pipeline stage is necessary since both inputs will come from memory blocks (and maybe
after traversing some switching logic), and it’s more efficient to use the sysDSP registers which are
“free” as opposed to “fabric” registers.

We tried with no pipeline registers between the Multiplier and the Accumulator, but the Fmax was
significantly lower and insufficient to guarantee an operation at at least 160 MHz with a slow speed
grade.

And the last pipeline stage is also welcome to relieves the P&R timing constraints on the MAC
output.

So, we have activated the three pipeline stages available in the sysDSP block, with a resulting
latency of 3. But indeed, the block is capable of performing one calculation (MAC) per each clock
cycle.

We have a streaming input interface with a Data-Valid for the Ain & Bin inputs : “DAVin”, and a
“DAVout” output which follows three clock cycles later.

VHDL ‘93

VHDL Entity :

-- sDSP.vhd

-- Title : Lattice sysDSP inference - VHDL source code
-- Tool : Lattice Radiant 2024.1.1
-- Project : xxxx FIR

-- File : sDSP.vhd
-- Author : Bert Cuzeau - ALSE
-- Contact : info@alse-fr.com
-- Created : 2024-12-28
-- Standard : VHDL'93/02

-- Description and Notes :
-- * 18x18 signed multiplier into a [53:0] Accumulator
-- * Infers a sysDSP block in MULTADDSUB configuration
-- * Synchronous clear of Accum isn't inferred correctly by LSE/SynplifyPro,
– must be Asynch
-- * Latency = 3
-- * Synthesizes as 3 Reg + 2 LUT4s + 1 sysDSP block
-- * runs at 200+ MHz on LFD2NX-28 CABGA256 - 8_High-Performance_1.0V
-- * Comes with advanced self-testing test bench

Library IEEE;
 use IEEE.std_logic_1164.all;
 use IEEE.numeric_std.all;

-- -------------------------------------
 Entity sDSP is
-- -------------------------------------
 port(Clk : in std_logic;
 Rst : in std_logic;
 Clr : in std_logic; -- (Asynch) clear for Accum
 Ain, Bin: in std_logic_vector(17 downto 0);
 DAVin : in std_logic;
 Dout : out std_logic_vector(53 downto 0);
 DAVout : out std_logic
);
begin
end entity sDSP;

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 8

VHDL Architecture :

-- -------------------------------------
 Architecture RTL of sDSP is
-- -------------------------------------
 subtype Accum_t is signed(Dout'range);
 subtype Din_t is signed(Ain'range);
 subtype Mult_t is signed (2*Ain'length-1 downto 0);

 signal DAVin_r, DAVin_rr, DAVin_rrr : std_logic;
 signal Ain_r : Din_t;
 signal Bin_r : Din_t;
 signal Accum : Accum_t;
 signal Mult : Mult_t;

-----\
Begin -- Architecture
-----/

-- DAV pipeline to match latency
 DAVin_r <= '0' when Rst='1' else DAVin when rising_edge(Clk);
 DAVin_rr <= '0' when Rst='1' else DAVin_r when rising_edge(Clk);
 DAVin_rrr <= '0' when Rst='1' else DAVin_rr when rising_edge(Clk);

process (Clk,Rst)
 begin
 if Rst = '1' then
 Ain_r <= (others => '0');
 Bin_r <= (others => '0');
 Mult <= (others => '0');
 elsif rising_edge(Clk) then
 Ain_r <= signed (Ain);
 Bin_r <= signed (Bin);
 Mult <= Ain_r * Bin_r;
 end if;
 end process;

process (Clk,Rst,Clr)
-- Synchronous Clear doesn't work for inference, have to use asynch clr
 begin
 if Rst = '1' or Clr='1'
 then
 Accum <= (others => '0');
 elsif rising_edge(Clk) then
 if DAVin_rr='1' then -- _rr for Latency = 3
 Accum <= Accum + Mult;
 end if;
 -- if Clr='1' then Accum <= (others => '0'); end if; -- not supported
 end if;
 end process;

DAVout <= DAVin_rrr; -- _rrr for Latency = 3
Dout <= std_logic_vector(Accum);

end architecture RTL;

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 9

SystemVerilog P1800-2017

//---
// Title : Lattice sysDSP inference - SystemVerilog source code
// Tool : Lattice Radiant 2024.1.1
// Project : xxxx FIR
//---
// File : sDSP.sv
// Author : Bert Cuzeau - ALSE
// Contact : info@alse-fr.com
// Created : 2024-12-28
// Standard : SystemVerilog P1800-2017
//---
// Description and Notes :
// * 18x18 signed multiplier into a [53:0] Accumulator
// * Infers a sysDSP block in MULTADDSUB configuration
// * Synchronous clear of Accum isn't inferred correctly by
// LSE nor SynplifyPro, must be Asynch
// * Latency = 3
// * Synthesizes as 3 Reg + 2 LUT4s + 1 sysDSP block
// * runs at 200+ MHz on LFD2NX-28 CABGA256 - 9_High-Performance_1.0V
// * Comes with advanced self-testing test bench
//---
package DSPtypes;
 typedef logic signed [17:0] sData_t;
 typedef logic signed [2*$bits(sData_t)-1:0] Mult_t;
 typedef logic signed [53:0] Accum_t;
endpackage

// -------------------------------------
 module sDSP
// -------------------------------------
 (input logic Clk,
 input logic Rst, // Asynch reset
 input logic Clr, // actually Asynch clear of Accumulator
 input DSPtypes::sData_t Ain,
 input DSPtypes::sData_t Bin,
 input logic DAVin,
 output DSPtypes::Accum_t Dout,
 output logic DAVout);

import DSPtypes::*;

logic DAVin_r, DAVin_rr, DAVin_rrr;
sData_t Ain_r, Bin_r;
Accum_t Accum;
Mult_t Mult;

// DAV pipeline to match latency
always_ff @(posedge Rst, posedge Clk) begin
 if (Rst) begin
 DAVin_r <= 1'b0;
 DAVin_rr <= 1'b0;
 DAVin_rrr <= 1'b0;
 end else begin
 DAVin_r <= DAVin;
 DAVin_rr <= DAVin_r;
 DAVin_rrr <= DAVin_rr;
 end
end

// Register Data inputs, and Mult output
always_ff @(posedge Clk, posedge Rst) begin
 if (Rst) begin
 Ain_r <= '0;
 Bin_r <= '0;
 Mult <= '0;
 end else begin
 if (DAVin) begin // to potentially reduce slightly the power consumption
 Ain_r <= $signed (Ain);
 Bin_r <= $signed (Bin);
 end
 Mult <= Ain_r * Bin_r;
 end
end

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 10

logic aCLR;
assign aClr= Rst | Clr;

// Accumulate
always_ff @(posedge Clk, posedge aClr) begin
 if (aClr) begin
 Accum <= '0;
 end else begin
 if (DAVin_rr) begin
 Accum <= Accum + Mult;
 end
 end
end

// module outputs
assign Dout = Accum;
assign DAVout = DAVin_rrr; // _rrr for Latency = 3

endmodule : sDSP

IX - Instantiation using Radiant

Even if inference has our preference when it is possible (as demonstrated in the previous
sections), the other way to insert an FPGA hardware feature in your design is to instantiate it.

If you try to insert the a DSP primitive, you’re doomed :-)
The best way seems to use “IP Catalog”, but there are many choices available which aren’t doing
the job, or almost but not completely, and you have the issue of not being sure of the behavior of
the block you instantiate.

We tried hard to find a way to generate exactly what we wanted : 18x18 multiplication followed by
54 bits accumulator with an enable for the input data !
The closest we came with was using the “pmi_mac” template found in the “PMI Templates” section
suing the “Source Template” mode. Unfortunately there was no “Enable” input controlling the
accumulator.

So in this application, the best way to generate the intended function is to use inference through
the code shown in this ApNote.

Note that in a lot of other cases (like PLLs or Asynch FIFOs), there is no way to use inference !
So you’ll have to use instantiation, using either the “IP Catalog” or the “Source Template” modes.

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 11

X - Verification

It’s really useful to create a self-testing test bench with a decent coverage :

➢ During the development to debug the code (and pipeline levels) : RTL simulation.

➢ To verify by post-synthesis simulation that the inferred sysDSP block behaves exactly like
the RTL code : post-synthesis simulation.

➢ For many reasons, it’s not useful to perform post-layout timing simulation.
This is explained in details in our Design Training Course.

Note that Radiant can help you in the creation of the testbench skeleton based on a selected entity
(or module). Many tools can also do this like Emacs (for a VHDL entity) or Teros-HDL.

We decided to write this testbench in plain VHDL, since SystemVerilog offers easier/better
verification capabilities (like queues and randomization). The challenge is higher in VHDL.

In VHDL, we have created a simple behavioral FIFO to handle automatically the MAC block
latency using a shared protected variable. This simple code is very useful and not trivial to many
VHDL users. It could be enhanced by adding a generic type and by using pointers (access) for
dynamic storage… but this will be for another time :-) and Google will help you locate a free library
implementing generic VHDL Queues (very similar to the SystemVerilog queues).

We use intensively pseudo-random generation for the input Data and for DAVin recurrence.

Note that a library like OSVVM can be useful especially when it comes to Randomization and
Functional Coverage, but this example demonstrates that using plain VHDL is often sufficient to
implement good quality verification.

Simulation of the RTL code

Both for the VHDL and the SystemVerilog code, we use QuestaSim Lattice Edition which comes
with Radiant and support both languages.

You can use another commercial simulator that supports VHDL and Verilog.

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 12

https://github.com/heikoengel/vhdl-queue

Self-Testing VHDL Test bench

Please open and understand the testbench.

We just reproduce here two snippets of the code.

Behavioral Fifo (“Queue”) :

-- Behavioral FIFO to handle fixed or variable latency
type Fifo_t is array (0 to Fifo_depth) of Accum_t;

type AccFifo_t is protected
 procedure Push (A : Accum_t);
 impure function Pop return Accum_t;
end protected AccFifo_t;

type AccFifo_t is protected body
 variable Fifo : Fifo_t;
 variable W,R : natural;
 variable vA : Accum_t;
 procedure Push (A : Accum_t) is begin
 Fifo(W):= A; W:=(W+1) mod Fifo_depth;
 assert W/=R report "Fifo overflow" severity failure;
 end procedure Push;
 impure function Pop return Accum_t is begin
 assert W/=R report "Reading from empty Fifo" severity failure;
 vA := Fifo(R);
 R:=(R+1) mod Fifo_depth;
 return vA;
 end function Pop;
end protected body AccFifo_t;

shared variable AccFifo : AccFifo_t;

Pushing into and popping from this behavioral Fifo consumes no time (and no delta).

For the circular buffer, we have used a fixed size array (which just needs to be deeper than the
longest latency), and a determined (non-generic) data type (Accum_t), so the code is very simple.
(but we’ll see it causes trouble to the simulation wizard).

Stimulus generation :

Clk <= '0' when Done else not Clk after Period/2;
Rst <= '1', '0' after 2 * Period;

process -- Generate random stimuli with random DAVin
 variable S1,S2 : positive;
 variable R : real;
begin
 DAVin <= '0';
 wait until Rst='0';
 wait until Clk='0';
 for I in 1 to 50 loop
 uniform (S1,S2,R); Ain <= R2V(R);
 uniform (S1,S2,R); Bin <= R2V(R);
 DAVin <= '1';
 wait until Clk='0';
 DAVin <= '0';
 uniform (S1,S2,R); R := R*5.0;
 for I in 1 to integer(R-2.0) loop
 wait until Clk='0';
 end loop;
 end loop;
 -- let's make sure the queue is empty :
 for I in 1 to 4 loop wait until Clk='0'; end loop;
 Done <= true;
 report "Test is successful if no error above";
 wait;
end process;

Note that the testbench also records the MAC output in a text file (we’ll see why later).

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 13

RTL Simulation results

We notice that the Data Valid input has some randomness to test the correct behavior of the
pipeline.

The simulation is self testing, but also records the output values :

00000001417995
00000032C2B689
3FFFFFBD71F39B
3FFFFECF200B15
3FFFFEA2A63843
3FFFFD5871AEC9
3FFFFD3108EA69
3FFFFC8A154399
3FFFFC6C082DE9
3FFFFD43471445
3FFFFD481E87D7
3FFFFD4455BECD
3FFFFC0D2D1689
3FFFFAD0D59751
3FFFFAE2866ECB
3FFFF8D02156AD
3FFFFA586E96F9
3FFFFBCE2B47A5
3FFFFD29665395
3FFFFFBB57601E
00000387B30F8A
0000020B804DC0
etc ...

We’ll see later that this file will be useful.

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 14

XI - Unitary Synthesis

It’s time to verify how our working behavioral code is implemented by Radiant.

But first, we’ll need a decent SDC constraints file.

Timing Constraints

This block is very simple : single clock domain, inputs and outputs are registered and are to be
used internally in the designs, so they can be false_path’ed.

➢ Definition of the clock (at 160 MHz)

➢ All I/Os can be ignored in the timing analysis

Here is the resulting SDC file

Very simple SDC Constraints file for sDSP project
ALSE - B. Cuzeau - Jan 2025
create_clock -period 6.25 [get_ports Clk]
set_false_path -from [get_ports Rst]
set_false_path -from [get_ports Clr]
set_false_path -from [get_ports Ain*]
set_false_path -from [get_ports Bin*]
set_false_path -from [get_ports DAVin]
set_false_path -to [get_ports Dout*]
set_false_path -to [get_ports DAVout]

This file will be used by Synthesis (either LSE or SynplifyPro), by P&R, and by the STA.

Radiant project

You can open the project provided, or create a new project :

➢ Select the FPGA :

➢ Add the HDL source code (either sv or vhd).

➢ Add the above SDC constraints file

➢ Make sure you generate the Post-Synthesis simulation model, the timing reports and
optionally the Gate-level simulation model.

➢ Run Synthesis and Map.

Check the Implementation result

➢ Launch the Netlist Analyzer

➢ Select the Technology View (see on the right) →

➢ Analyze the implemented logic

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 15

Technology View Netlist

As we can see, three Flip-Flops have been inferred for the DAV pipeline -as expected- and a
sysDSP block in MULTADDSUB18x18 mode, which is exactly what we wanted and consumes no
logic at all.

Timing Results

The post map timing reports indicates no error.

This is confirmed by the post-route timing check :

Setup at Speed Grade 9_High-Performance_1.0V Corner at 85 Degrees
 Timing Errors: 0 endpoints; Total Negative Slack: 0.000 ns

Setup at Speed Grade 9_High-Performance_1.0V Corner at 0 Degrees
 Timing Errors: 0 endpoints; Total Negative Slack: 0.000 ns

Hold at Speed Grade m Corner at 0 Degrees
 Timing Errors: 0 endpoints; Total Negative Slack: 0.000 ns

As we can see, the MAC block can run very comfortably at the intended 160 MHz in the selected
FPGA (the positive slack is reported at 2.739 ns, indicating it would run at > 200 MHz !).

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 16

Post synthesis simulation

Post Synthesis simulation is important when using (instantiating) vendor blocks to ensure they
perform as you want. In this case, we could do without if we 100% trust the synthesizer to infer the
correct block with correct parameters. Better safe than sorry, let simulate !

Here we hit other problems. There are tools to perform post implementation simulations (with the
Simulation Wizard) but we did hit issues, and the documentation is insufficient as soon as anything
goes wrong. For example, it’s not trivial to understand that you should only launch the simulation
wizard once, then you must open the created simulation script.

One annoyance is that all the generated simulation files are in Verilog, there is no option to
generate VHDL models. It is possible to conduct mixed language simulation with the simulator that
comes with Radiant, so it’s not a show stopper but it is an additional challenge to deal with.

And unfortunately, the simulation wizard process is based on a custom parser (“hdlparser”) to
analyze the test bench : which is a very bad idea !!! In our case, this parser crashed by rejecting
reasonably advanced (but absolutely legal and VHDL 93) features. It also chokes on direct
instantiation.

We tried to generate a simplified VHDL test bench based on side-by-side simulation of RTL and
post-synthesis models, and we gave up the not useful idea of post-layout timing simulation (the
tool had trouble trying to back-annotate the vo netlist with the sdf, for reasons we didn’t
investigate). But it became complex to instantiate the side by side the RTL model and the post-
synthesis model with the generated simulation script.

So we ended up with a simplified testbench that records the MAC output values in a text file
(MACoutput.txt), which can be compared with the RTL model outputs (rtlMACoutput.txt).

XII - Conclusion

This document explains how to design efficiently Signal Processing blocks using the sysDSP hard
IP available in many Lattice FPGAs while retaining a standard HDL methodology.

It demonstrates some advanced techniques to code efficient VHDL test benches.

It shows our experience during this simple development and how the issues can be worked
around.

It demonstrates that the Lattice FPGAs are attractive and that the Lattice design tools have made
significant progress. And we definitely recommend the 2 hours 40 minutes free video training about
Radiant Fundamentals. Don’t use Radiant before taking this small course.

And if you want to test the tools, you can request our Radiant Installation and Discovery
document !

For any type question about this Application Note, please contact us by E-mail.

Bertrand CUZEAU
Chief Technology Officer A.L.S.E

Advanced Logic Synthesis for Electronics
A.L.S.E. - http s://www.alse-fr.com

© ALSE 2025 Signal Processing in Lattice FPGAs – ApNote 1 17

https://www.alse-fr.com/
mailto:info@alse-fr.com
https://www.latticesemi-insights.com/courses/developing-with-radiant-fundamentals/
https://www.latticesemi-insights.com/courses/developing-with-radiant-fundamentals/

	I - Document history
	II - Archive
	III - Introduction
	Experimenting
	IV - The Design Challenge
	V - The Silicon
	VI - The Design Tools
	VII - The documents
	Architecture of a DSP block

	VIII - Inference by HDL Code
	VHDL ‘93
	SystemVerilog P1800-2017

	IX - Instantiation using Radiant
	X - Verification
	Simulation of the RTL code
	Self-Testing VHDL Test bench
	RTL Simulation results

	XI - Unitary Synthesis
	Timing Constraints
	Radiant project
	Technology View Netlist
	Timing Results
	Post synthesis simulation

	XII - Conclusion

